GAMMA NORM MINIMIZATION BASED IMAGE DENOISING ALGORITHM

Gamma norm minimization based image denoising algorithm

Gamma norm minimization based image denoising algorithm

Blog Article

Focusing on the issue of rather poor denoising Dryer Motor Pulley performance of the traditional kernel norm minimization based method caused by the biased approximation of kernel norm to rank function,based on the low-rank theory,a gamma norm minimization based image denoising algorithm was developed.The noisy image was firstly divided into some overlapping patches via the proposed algorithm,and then several non-local image patches most similar to the current image patch were sought adaptively based on the structural similarity index to form the similar image patch matrix.Subsequently,the non-convex gamma norm could be exploited to obtain unbiased approximation of the matrix rank function such that the low-rank Engine Brackets denoising model could be constructed.

Finally,the obtained low-rank denoising optimization issue could be tackled on the basis of singular value decomposition,and therefore the denoised image patches could be re-constructed as a denoised image.Simulation results demonstrate that,compared to the existing state-of-the-art PID,NLM,BM3D,NNM,WNNM,DnCNN and FFDNet algorithms,the developed method can eliminate Gaussian noise more considerably and retrieve the original image details rather precisely.

Report this page